Abstract
The Interferometric Synthetic Aperture Radar (InSAR) has significantly advanced in its usage for analyzing surface information such as displacement or elevation. In this study, we evaluated a digital elevation model (DEM) constructed using X-band KOMPSAT-5 interferometric datasets provided by the Korea Aerospace Research Institute (KARI). The 28-day revisit cycle of KOMPSAT-5 poses challenges in maintaining interferometric correlation. To address this, four KOMPSAT-5 images were employed in a multi-baseline interferometric approach to mitigate temporal decorrelation effects. Despite the slightly longer temporal baselines, the analysis revealed sufficient coherence (>0.8) in three interferograms. The height of ambiguity ranged from 59 to 74 m, which is a moderate height of sensitivity to extract topography over the study area of San Francisco in the USA. Unfortunately, only ascending acquisition mode datasets were available for this study. The derived DEM was validated against three reference datasets: Copernicus GLO-30 DEM, ICESat-2, and GEDI altimetry. A high coefficient of determination (R2 > 0.9) demonstrates the feasibility of the interferometric application of KOMPSAT-5.
Keywords:
KOMPSAT-5; multi-baseline; interferometric synthetic aperture radar (InSAR); digital elevation model (DEM)