활용사례

활용 사례
제목 심층신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류
국/내외 국내 작성일 2022-04-05

심층신경망을 이용한 KOMPSAT-3/3A/5 영상으로부터 자연림과 인공림의 분류 첨부 이미지

위성 원격탐사 기법은 산림 모니터링에 적극적으로 활용될 수 있으며 우리나라 독자 운영 위성인 다목 적실용위성을 활용하였을 때 특히 의미 깊다. 최근 들어 위성 원격탐사 자료에 머신러닝 기법을 적용함으로써 산림 모니터링을 수행하는 연구가 다수 이루어지고 있다. 머신러닝 기법을 통하여 제작된 산림모니터링 정보 는 기존 산림 모니터링 방법의 효율성을 향상시키는 데에 활용할 수 있다. 머신러닝 기법의 경우 관심 지역과 활용 데이터의 특징에 따라 분류 정확도가 크게 달라지므로 다양한 모델을 적용함으로써 가장 효과적인 분류 결과를 도출하는 것이 매우 중요하다. 본 연구에서는 우리나라 삼척 지역에 대해 심층신경망을 적용함으로써 인공림과 자연림의 분류 성능을 확인하였다. 그 결과 픽셀 정확도가 약 0.857, F1 Score가 자연림과 인공림에 대 해 각각 약 0.917과 0.433로 확인되었다. F1 score를 보았을 때 인공림의 분류 성능이 절대적으로는 낮은 수준을 나타냈다. 하지만 기존의 인공림과 자연림 분류 성능에 대해 F1 score를 기준으로 약 0.06, 그리고 0.10 향상된 성능을 확인할 수 있었다. 이러한 결과를 바탕으로 볼 때에 합성곱신경망 기반의 추가적인 모델을 적용함으로 써 보다 적절한 모델을 분석할 필요가 있다.

Key Words:Korea Multi-Purpose Satellite (KOMPSAT), Machine Learning, Deep Neural Network, Natural Forest, Artificial Forest

출처 대한원격탐사학회지
이전/이후 글
이전글 통계기법을 이용한 천리안위성 2A호 일일 해수면온도 산출물의 이상화소 검출 및 결측화소 복원 실험
다음글 다음 글이 없습니다.

네팔:지진(2015-05-05)

영상 정보
카테고리 재난재해
위성정보 KOMPSAT-3
생성일 2015-03-24

세부정보

영상 세부 정보
ProductID K3_20150505073608_15817_06161210
국가(영문) Nepal
국가 네팔
지역 Pokhara
레벨 1R