제목 | 심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 | ||
---|---|---|---|
국/내외 | 국내 | 작성일 | 2023-10-30 |
본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deepneural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기 의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종 관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하 는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22°C로 기준모델의 RMSE 3.55°C 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34°C를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다. 주요어: 천리안위성 2A호, 기온, 지표면 온도, 기계학습, 심층신경망 |
|||
출처 | 대한원격탐사학회지 |
이전글 | 통계기법을 이용한 천리안위성 2A호 일일 해수면온도 산출물의 이상화소 검출 및 결측화소 복원 실험 |
---|---|
다음글 | 고해상도 광학 위성영상의 항만선박관리 활용 가능성 평가: 부산 신항의 선석 활용을 대상으로 |
2024-08-22
2024-08-22
2024-07-29
토양
2024-09-05
토양
2024-09-03
지리
2024-08-23
2024-07-09
2023-06-26
카테고리 | 재난재해 |
---|---|
위성정보 | KOMPSAT-3 |
생성일 | 2015-03-24 |
ProductID | K3_20150505073608_15817_06161210 |
---|---|
국가(영문) | Nepal |
국가 | 네팔 |
지역 | Pokhara |
레벨 | 1R |