활용사례

활용 사례
제목 위성영상을 활용한 토지피복 분류 항목별 딥러닝 최적화 연구
국/내외 국내 작성일 2021-02-02

위성영상을 활용한 토지피복 분류 항목별 딥러닝 최적화 연구 첨부 이미지

본 연구는 고해상도 위성영상을 딥러닝 알고리즘에 적용하여 토지피복을 분류하고 공간객체별 알고리즘의 성능 검증에 대한 연구이다. 이를 Fully Convolutional Network계열의 알고리즘을 선정하였으며, Kompasat-3 위성영상, 토지피복지도 및 임상도를 활용하여 데이터셋을 구축하였다. 구축된 데이터셋을 알고리즘에 적용하여 각각 최적 하이퍼파라미터를 산출하였다. 하이퍼파라미터 최적화 이후 최종 분류를 시행하였으며, 전체 정확도는 DeeplabV3+가 81.7%로 가장 높게 산정되었다. 그러나 분류 항목별로 정확도를 살펴보면, 도로 및 건물에서 SegNet이 가장 우수한 성능을 나타내었으며, 활엽수, 논의 항목에서 U-Net이 가장 높은 정확도를 보였다. DeeplabV3+의 경우 밭과 시설재배지, 초지 등에서 다른 두 모델보다 우수한 성능을 나타내었다. 결과를 통해 토지피복 분류를 위해 하나의 알고리즘 적용에 대한 한계점을 확인하였으며, 향후 공간객체별로 적합한 알고리즘을 적용한다면, 높은 품질의 토지피복분류 결과를 산출할 수 있을 것으로 기대된다.



Key Words: Land cover, Classification, Deep learning, Kompsat, Semantic segmentation

출처 대한원격탐사학회지
이전/이후 글
이전글 계절적 특성을 갖는 공간객체추출을 위한 고해상도 다시기 위성영상의 활용
다음글 다음 글이 없습니다.

네팔:지진(2015-05-05)

영상 정보
카테고리 재난재해
위성정보 KOMPSAT-3
생성일 2015-03-24

세부정보

영상 세부 정보
ProductID K3_20150505073608_15817_06161210
국가(영문) Nepal
국가 네팔
지역 Pokhara
레벨 1R