활용사례

활용 사례
제목 KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류
국/내외 국내 작성일 2024-04-19

KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류 첨부 이미지

대한민국은 인구 증가와 산업 발전의 결과로 많은 양의 오염물질을 배출하는 국가이자, 지리적 위치로 인해 월경성 대기오염의 심각한 영향을 받는 국가이다. 국내외에서 발생하는 오염물질이 대한민국의 대기오 염에 큰 피해를 야기하는 상황에서, 대기 오염물질 배출원의 위치 정보는 대기 중 오염물질의 이동 및 분포를 파악하고, 국가 차원의 대기오염 관리 및 대응 전략을 수립하는 데 매우 중요하다. 본 연구는 이러한 배경을 바 탕으로, 고해상도 광학위성 영상과 딥러닝 기반의 영상 분할 모델을 활용하여 대기오염 현황을 분석하는 데 필 수적인 국내외 대기오염물질 배출원의 공간 정보를 효과적으로 획득하는 것을 목표로 수행되었다. 특히, 월경 성 대기오염에 크게 기여하는 것으로 평가된 산업단지와 채석장을 주요 연구 대상으로 선정하였으며, 이들 영 역에 대한 다목적실용위성 3호 및 3A호의 영상들을 수집하여 전처리한 후, 모델 학습을 위한 입력 및 라벨 데 이터로 변환하였다. 해당 데이터를 활용하여 U-Net 모델을 학습시킨 결과, 전체 정확도는 0.8484, mean Intersection over Union (mIoU)은 0.6490을 달성하였다. 모델의 예측 결과 맵은 코스 어노테이션(Course Annotation) 방식으로 제작된 라벨 데이터보다 객체의 경계를 더욱 정확하게 추출하는 것으로 나타나, 데이터 처리 및 모델 학습 방법론의 유효성을 입증하였다.

주요어: 원격탐사, 딥러닝, 의미론적 분할, 산업단지, 채석장

출처 대한원격탐사학회지
이전/이후 글
이전글 SSResUnet 모델을 이용한 위성 영상 토지피복분류 Land Cover Classification of Satellite Image using SSResUnet Model
다음글 다목적실용위성 6호 수신처리시스템 SAR/AIS 융합 기법 연구

네팔:지진(2015-05-05)

영상 정보
카테고리 재난재해
위성정보 KOMPSAT-3
생성일 2015-03-24

세부정보

영상 세부 정보
ProductID K3_20150505073608_15817_06161210
국가(영문) Nepal
국가 네팔
지역 Pokhara
레벨 1R