제목 | 핵 활동 분석을 위한 다시기·다종 위성영상의 딥러닝 모델 기반 객체탐지의 활용성 평가 | ||
---|---|---|---|
국/내외 | 국내 | 작성일 | 2021-11-04 |
접근불능지역에 대한 핵활동 모니터링을 위해서는 고해상도 위성영상을 이용하여 핵활동 관련 객체의 변화양상을 분석하는 방법론의 수립이 필요하다. 그러나, 위성영상을 이용한 전통적인 객체탐지 및 변화탐지 기법들은 영상 취득 시 계절, 날씨 등의 영향에 의하여 탐지 결과물들을 다양한 활용분야에 적용하기에 어려움 이 있다. 따라서, 본 연구에서는 딥러닝 모델을 이용하여 위성영상에서 관심객체를 탐지하고, 이를 활용하여 다시기 위성영상 내의 객체 변화를 분석하고자 하였다. 이를 위하여, 객체탐지를 위한 공개데이터셋을 이용하 여 딥러닝 모델의 선행학습을 수행하고, 관심지역에 대한 학습자료를 직접 제작하여 전이학습에 적용하였다.다시기·다종 위성영상 내의 객체를 개별적으로 탐지한 후, 이를 활용하여 영상 내 객체의 변화양상을 탐지하였다. 이를 통해 접근불능지역에 대한 핵 활동 관련 모니터링을 위하여 다양한 위성영상에 대한 객체탐지 결과 를 직접적으로 변화탐지에 활용할 수 있는 가능성을 확인하였다. |
|||
출처 | 대한원격탐사학회지 |
이전글 | 모의영상을 이용한 농림위성 대기보정의 주요 파라미터 민감도 분석 및 타위성 산출물 활용 가능성 제시 |
---|---|
다음글 | 무인항공기 영상 활용 자동 정합점 추출을 통한 KOMPSAT-3A 위성영상의 RPC 보정 |
2023-04-19
2022-09-22
2022-06-07
지리
2023-11-28
지리
2023-11-28
지리
2023-11-20
2023-06-26
2023-05-31
카테고리 | 재난재해 |
---|---|
위성정보 | KOMPSAT-3 |
생성일 | 2015-03-24 |
ProductID | K3_20150505073608_15817_06161210 |
---|---|
국가(영문) | Nepal |
국가 | 네팔 |
지역 | Pokhara |
레벨 | 1R |